RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.2
Question 1.
Answer:
Let I = ∫ dx
Putting 1 + x2 = t
⇒ 2x dx = dt
∴ ∫ dx = ∫
= log |t| + C
= log |1 + x2| + C
= log (1 + x2) + C
Question 2.
Question 4.
sin x sin (cos x)
Answer:
Let I = ∫sin x sin (cos x) dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sin x sin (cos x) dx = - ∫ sin t dt
= + cos t + C
= cos (cos x) + C
Question 5.
sin (ax + b) cos (ax + b)
Answer:
Let I = ∫ sin (ax + b) cos (ax + b) dx
Putting sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
⇒ cos (ax + b) dx =
Remark : Here, we can also evaluate integral by assuming cos (ax + b) = t.
Putting cos(ax + b) = t
⇒ - a sin(ax + b) dx = dt
⇒ sin (ax + b) dx = -
∴ ∫sin (ax + b) cos(ax + b)dx
= - dt
= - + C
= - + C
Second Method:
∫ sin (ax + b) cos (ax + b) dx
= ∫ 2 sin (ax + b) cos (ax + b) dx
[Multiplying numerator and denominator by 2]
= ∫ sin 2(ax + b) dx
= ∫ sin (2ax + 2b) dx
Putting 2ax + 2b = t
⇒ 2a dx = dt
Question 6.
x
Answer:
Let I = ∫ dx = ∫ (ax + b)1/2 dx
Putting ax + b = t
⇒ a dx = dt
⇒ dx =
Question 8.
x
Answer:
Let I = ∫ x dx
Putting 1 + 2x2 = t
⇒ 4 dx = dt
⇒ x dx =
Question 11.
, x > 0
Answer:
Let I = ∫ dx
Putting x + 4 = t
⇒ dx = dt
and x = t - 4
Question 12.
(x3 - 1)1/3 x5
Answer:
Let I = ∫ (x3 - 1)1/3 x5
Putting x3 - 1 = t
⇒ 3x2 dx = dt
⇒ x2 dx =
and x3 = t + 1
∴ ∫ (x3 - 1)1/3 x5 dx = ∫ (x3 - )1/3 . x3 .x2 dx
Question 13.
Answer:
Let I = ∫ dx
Putting 2 + 3x3 = t
⇒ 9x2 dx = dt
⇒ x2 dx = dt
Question 14.
, x > 0 , m ≠ 1
Answer:
Question 15.
Answer:
Let I = ∫ dx
Putting 9 - 4x2 = t
⇒ - 8x dx = dt
⇒ x dx = - dt
Question 16.
e2x + 3
Answer:
Let I = ∫ e2x + 3 dx
= ∫ e2x . e3 dx
= e3 ∫ e2x dx
Putting 2x = t
⇒ 2 dx = dt
⇒ dx =
∴ ∫ e2x + 3 dx = e3 ∫ et
Alter: ∫ e2x + 3 dx
Let 2x + 3 = t
2 dx = dt
or dx =
∴ ∫ e2x + 3 dx = ∫ et dt = et + C
= e2x + 3 + C
Question 17.
Question 20.
Answer:
Let I =
Putting e2x + e-2x = t
⇒ (2e2x - 2e-2x) dx = dt
⇒ (e2x - e-2x) = dt
∴ ∫ dx = dt
= log |t| + C
= log |e2x + e-2x| + C
Question 21.
tan2 (2x - 3)
Answer:
Let I = ∫ tan2 (2x - 3) dx
= ∫ {sec2 (2x - 3) - 1} dx
= ∫ sec2 (2x - 3) dx - ∫ dx
Putting 2x - 3 = t
⇒ 2dx = dt
⇒ dx = dt
∴ ∫ tan2 (2x - 3) dx = ∫ sec2 (2x - 3) dx = ∫ dx
= ∫ sec2 t.dt - ∫ dx
= tan t - x + C
= tan (2x - 3) - x + C
Question 22.
sec2 (7 - 4x)
Answer:
Let I = ∫ sec2 (7 - 4x) dx
Putting 7 - 4x = t
⇒ - 4 dx = dt
⇒ dx = - dt
∴ ∫ sec2 (7 - 4x) dx = - ∫sec2 t dt
= - tan t + C
= - tan (7 - 4x) + C
Question 23.
Answer:
Let I = ∫ dx
Putting sin-1 x = t
Question 24.
Answer:
Putting 3 cos x + 2 sin x = t
⇒ (- 3 sin x + 2 cos x) dx = dt
⇒ (2 cos x - 3 sin x) dx = dt
Question 27.
cos 2x
Answer:
Let I = ∫ cos 2x dx
Putting sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ cos 2x dx = dt
Question 29.
cot x log sin x
Answer:
Let I = ∫ cot x log sin x dx
Putting log sin x = t
⇒ × cos x dx = dt
⇒ cot x dx = dt
∴ ∫ cot x (log sin x) dx = ∫t dt = + C
= + C
Question 30.
Answer:
Let I = ∫ dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ dx = - ∫ dt
= - log |t| + C
= - log |(1 + cos x)| + C
Question 31.
Answer:
Let I = ∫ dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
Question 38.
∫ dx equals:
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10)-1
(D) log (10x + x10) + C
Answer:
Let x10 + 10x = t
⇒ (10x9 + 10x loge 10) dx = dt
∴ ∫ dx = ∫
= log |t| + C
= log (x10 + 10x) + C
Hence, (D) is the correct answer.
Question 39.
∫ equals:
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Answer:
Hence, (B) is the correct answer.
Either way the teacher or student will get the solution to the problem within 24 hours.