RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.2

Topprs
0

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.2

Question 1.

2x1+x2
Answer:
Let I = ∫ 2x1+x2 dx
Putting 1 + x2 = t
⇒ 2x dx = dt
∴ ∫ 2x1+x2 dx = ∫ dtt
= log |t| + C
= log |1 + x2| + C
= log (1 + x2) + C

Question 2.

(logx)2x
Answer:

Question 3.
1(x+xlogx)
Answer:

Question 4.
sin x sin (cos x)
Answer:
Let I = ∫sin x sin (cos x) dx
Putting cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sin x sin (cos x) dx = - ∫ sin t dt
= + cos t + C
= cos (cos x) + C

Question 5.

sin (ax + b) cos (ax + b)
Answer:
Let I = ∫ sin (ax + b) cos (ax + b) dx
Putting sin (ax + b) = t
⇒ a cos (ax + b) dx = dt
⇒ cos (ax + b) dx = dta

Remark : Here, we can also evaluate integral by assuming cos (ax + b) = t.
Putting cos(ax + b) = t
⇒ - a sin(ax + b) dx = dt
⇒ sin (ax + b) dx = - dta
∴ ∫sin (ax + b) cos(ax + b)dx
= - tdta=1at dt
= - 1at22 + C
= - cos2(ax+b)2a + C

Second Method:
∫ sin (ax + b) cos (ax + b) dx
12 ∫ 2 sin (ax + b) cos (ax + b) dx
[Multiplying numerator and denominator by 2]
12 ∫ sin 2(ax + b) dx
12 ∫ sin (2ax + 2b) dx
Putting 2ax + 2b = t
⇒ 2a dx = dt

Question 6.
xax+b
Answer:
Let I = ∫ ax+b dx = ∫ (ax + b)1/2 dx
Putting ax + b = t
⇒ a dx = dt
⇒ dx = dta
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 5

Question 7.
xx+2
Answer:

Question 8.
x1+2x2
Answer:
Let I = ∫ x1+2x2 dx
Putting 1 + 2x2 = t
⇒ 4 dx = dt
⇒ x dx = dt4

Question 9.
(4x + 2) x2+x+1
Answer:

Question 10.
1xx
Answer:

Question 11.
xx+4, x > 0
Answer:
Let I = ∫ xx+4 dx
Putting x + 4 = t
⇒ dx = dt
and x = t - 4

Question 12.
(x3 - 1)1/3 x5
Answer:
Let I = ∫ (x3 - 1)1/3 x5
Putting x3 - 1 = t
⇒ 3x2 dx = dt
⇒ x2 dx = dt3
and x3 = t + 1
∴ ∫ (x3 - 1)1/3 x5 dx = ∫ (x3 - )1/3 . x3 .x2 dx

Question 13.
x2(2+3x3)3
Answer:
Let I = ∫ x2(2+3x3)3 dx
Putting 2 + 3x3 = t
⇒ 9x2 dx = dt
⇒ x2 dx = 19 dt

Question 14.
1x(logx)m, x > 0 , m ≠ 1
Answer:

Question 15.
x94x2
Answer:
Let I = ∫ x94x2 dx
Putting 9 - 4x2 = t
⇒ - 8x dx = dt
⇒ x dx = - 18dt

Question 16.
e2x + 3
Answer:
Let I = ∫ e2x + 3 dx
= ∫ e2x . e3 dx
= e3 ∫ e2x dx
Putting 2x = t
⇒ 2 dx = dt
⇒ dx = dt2
∴ ∫ e2x + 3 dx = e3 ∫ et
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 15

Alter: ∫ e2x + 3 dx
Let 2x + 3 = t
2 dx = dt
or dx = dt2
∴ ∫ e2x + 3 dx = 12 ∫ et dt = 12 et + C
12 e2x + 3 + C

Question 17.

xex2
Answer:

Question 18.
etan1x1+x2
Answer:

Question 19.
e2x1e2x+1
Answer:

Question 20.
e2xe2xe2x+e2x
Answer:
Let I = e2xe2xe2x+e2x
Putting e2x + e-2x = t
⇒ (2e2x - 2e-2x) dx = dt
⇒ (e2x - e-2x) = 12 dt
∴ ∫e2xe2xe2x+e2x dx = 121t dt
= log |t| + C
= log |e2x + e-2x| + C

Question 21.
tan2 (2x - 3)
Answer:
Let I = ∫ tan2 (2x - 3) dx
= ∫ {sec2 (2x - 3) - 1} dx
= ∫ sec2 (2x - 3) dx - ∫ dx
Putting 2x - 3 = t
⇒ 2dx = dt
⇒ dx = 12dt
∴ ∫ tan2 (2x - 3) dx = ∫ sec2 (2x - 3) dx = ∫ dx
12 ∫ sec2 t.dt - ∫ dx
12 tan t - x + C
12 tan (2x - 3) - x + C

Question 22.
sec2 (7 - 4x)
Answer:
Let I = ∫ sec2 (7 - 4x) dx
Putting 7 - 4x = t
⇒ - 4 dx = dt
⇒ dx = - 14 dt
∴ ∫ sec2 (7 - 4x) dx = - 14 ∫sec2 t dt
= - 14 tan t + C
= - 14 tan (7 - 4x) + C

Question 23.
sin1x1x2
Answer:
Let I = ∫ sin1x1x2 dx
Putting sin-1 x = t

Question 24.
2cosx3sinx6cosx+4sinx
Answer:
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 20
Putting 3 cos x + 2 sin x = t
⇒ (- 3 sin x + 2 cos x) dx = dt
⇒ (2 cos x - 3 sin x) dx = dt

Question 25.
Answer:

Question 26.
cosxx
Answer:

Question 27.
sin2x cos 2x
Answer:
Let I = ∫ sin2x cos 2x dx
Putting sin 2x = t
⇒ 2 cos 2x dx = dt
⇒ cos 2x dx = 12 dt

Question 28.
cosx1+sinx
Answer:

Question 29.
cot x log sin x
Answer:
Let I = ∫ cot x log sin x dx
Putting log sin x = t
⇒ 1sinx × cos x dx = dt
⇒ cot x dx = dt
∴ ∫ cot x (log sin x) dx = ∫t dt = t22 + C
(logsinx)22 + C

Question 30.

sinx1+cosx
Answer:
Let I = ∫ sinx1+cosx dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
∴ ∫ sinx1+cosx dx = - ∫ 1t dt
= - log |t| + C
= - log |(1 + cos x)| + C

Question 31.
sinx(1+cosx)2
Answer:
Let I = ∫ sinx(1+cosx)2 dx
Putting 1 + cos x = t
⇒ - sin x dx = dt
⇒ sin x dx = - dt
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.2 26

Question 32.
1(1+cotx)
Answer:

Question 33.
11tanx
Answer:

Question 34.
tanxsinxcosx
Answer:

Question 35.
(1+logx)2x
Answer:

Question 36.
(x+1)(x+logx)2x
Answer:

Question 37.
x3sin(tan1x4)1+x8
Answer:

Question 38.
∫ 10x9+10xloge10x10+10x dx equals:
(A) 10x - x10 + C
(B) 10x + x10 + C
(C) (10x - x10)-1
(D) log (10x + x10) + C
Answer:
Let x10 + 10x = t
⇒ (10x9 + 10x loge 10) dx = dt
∴ ∫ 10x9+10xloge10x10+10x dx = ∫dtt
= log |t| + C
= log (x10 + 10x) + C
Hence, (D) is the correct answer.

Question 39.

∫ dxsin2xcos2x equals:
(A) tan x + cot x + C
(B) tan x - cot x + C
(C) tan x cot x + C
(D) tan x - cot 2x + C
Answer:

Hence, (B) is the correct answer.

सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close