RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.1

Topprs
0

RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.1

Question 1.

sin 2x
Answer:
Let I = ∫ sin 2x dx
We know that
ddx (cos 2x) = - 2 sin 2x
⇒ ddx (-12cos 2x) = sin 2x
∴ ∫sin 2x dx = - 12 cos 2x + C

Question 2.
cos 3x
Answer:
Let I = cos 3x
We know that
ddx (sin 3x) = 3 cos 3x
⇒ ddx (-13sin 3x) = cos 3x
∴ ∫cos 3x dx = - 13 sin 3x + C

Question 3.
e2x
Answer:
Let I = ∫e2x dx
We know that

Question 4.
(ax + b)2
Answer:
Let I = ∫(ax + b)2 dx
We know that

Question 5.

sin 2x - 4e3x
Answer:
Let I = ∫ (sin 2x - 4e3x) dx
= ∫ sin 2x dx - 4 ∫e3x dx

Question 6.
∫ (4e3x + 1) dx
Answer:
∫ (4e3x + 1) dx = 4 ∫e3x dx + ∫ 1 dx
= 4 e3x3 + x + C
43 e3x + x + C

Question 7.
∫x2(11x2) dx
Answer:
Let I = ∫x2(11x2)dx
= ∫ (x2 - 1) dx
= ∫ x2 dx - ∫ 1 dx
x33 - x + C

Question 8.
∫ (ax2 + bx + c) dx
Answer:
∫ (ax2 + bx + c) dx
= a ∫x2 dx + b ∫ x dx + c ∫ 1.dx

Question 9.
∫ (2x2 + ex) dx
Answer:
∫ (2x2 + ex) dx = 2 ∫ x2 dx + ∫ ex dx
= 2x2+12+1 + ex + C
23x3 + ex + C

Question 10.
∫ (x1x)2 dx
Answer:

Question 11.
∫ x3+5x24x2 dx
Answer:

Question 12.
x3+3x+4x dx
Answer:

Question 13.
x3x2+x1x1 dx
Answer:

Question 14.
∫ (1 - x) √x dx
Answer:
∫ (1 - x) √x dx = ∫(√x - x√x)dx
= ∫ (x1/2 - x.x1/2) dx
= ∫ x1/2 dx - ∫ x3/2 dx
RBSE Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.1 9

Question 15.
∫ √x(3x2 + 2x + 3) dx
Answer:

Question 16.
∫ (2x - 3 cos x + ex) dx
Answer:
∫ (2x - 3 cos x + ex) dx
= 2 ∫x dx - 3 ∫ cos x dx + ∫ ex dx
= 2.x22 - 3 sin x + ex + C
= x2 - 3 sin x + ex + C

Question 17.
∫ (2x2 - 3 sin x + 5√x) dx
Answer:
∫ (2x2 - 3 sin x + 5√x) dx
= 2 ∫x2 dx - 3 ∫ sin x dx + 5 ∫x1/2 dx

Question 18.
∫ sec x (sec x + tan x) dx
Answer:
∫ sec x (sec x + tan x) dx
= ∫ sec2x dx + ∫sec x tan x dx
= tan x + sec x + C

Question 19.
∫ sec2xcosec2x
Answer:
Let I = ∫sec2xcosec2x dx = ∫sin2xcos2x dx
= ∫tan2 dx
= ∫ (sec2 x - 1) dx
= ∫ sec2 x dx - ∫1. dx
= tan x - x + C

Question 20.
23sinxcos2x dx
Answer:
Let I = ∫23sinxcos2x dx
= ∫2cos2xdx3sinxcos2x dx
= 2 ∫ sec2 x dx - 3 ∫ sec x tan x dx
= 2 tan x - 3 sec x + C

Question 21.

The antiderivative of (√x + 1x) equals:
(A) 13x1/3 + 2x1/2 + C
(B) 23x2/3 + 12x2 + C
(C) 23x3/2 + 2x1/2 + C
(D) 32x3/2 + 12x1/2 + C
Answer:

Hence, (C) is the correct answer.

Question 22.
If ddx f(x) = 4x3 - 3x4 such that f(2) = 0. Then f(x) is:
(A) x4+1x31298
(B) x3+1x4+1298
(C) x4+1x3+1298
(D) x3+1x41298
Answer:

सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close