RBSE Class 12 Maths Solutions Chapter 7 Integrals Ex 7.1
Question 1.
sin 2x
Answer:
Let I = ∫ sin 2x dx
We know that
(cos 2x) = - 2 sin 2x
⇒ (-cos 2x) = sin 2x
∴ ∫sin 2x dx = - cos 2x + C
Question 2.
cos 3x
Answer:
Let I = cos 3x
We know that
(sin 3x) = 3 cos 3x
⇒ (-sin 3x) = cos 3x
∴ ∫cos 3x dx = - sin 3x + C
Question 3.
e2x
Answer:
Let I = ∫e2x dx
We know that
Question 4.
(ax + b)2
Answer:
Let I = ∫(ax + b)2 dx
We know that
Question 5.
sin 2x - 4e3x
Answer:
Let I = ∫ (sin 2x - 4e3x) dx
= ∫ sin 2x dx - 4 ∫e3x dx
Question 6.
∫ (4e3x + 1) dx
Answer:
∫ (4e3x + 1) dx = 4 ∫e3x dx + ∫ 1 dx
= 4 + x + C
= e3x + x + C
Question 7.
∫x2 dx
Answer:
Let I = ∫x2dx
= ∫ (x2 - 1) dx
= ∫ x2 dx - ∫ 1 dx
= - x + C
Question 8.
∫ (ax2 + bx + c) dx
Answer:
∫ (ax2 + bx + c) dx
= a ∫x2 dx + b ∫ x dx + c ∫ 1.dx
Question 9.
∫ (2x2 + ex) dx
Answer:
∫ (2x2 + ex) dx = 2 ∫ x2 dx + ∫ ex dx
= 2 + ex + C
= x3 + ex + C
Question 14.
∫ (1 - x) √x dx
Answer:
∫ (1 - x) √x dx = ∫(√x - x√x)dx
= ∫ (x1/2 - x.x1/2) dx
= ∫ x1/2 dx - ∫ x3/2 dx
Question 15.
∫ √x(3x2 + 2x + 3) dx
Answer:
Question 16.
∫ (2x - 3 cos x + ex) dx
Answer:
∫ (2x - 3 cos x + ex) dx
= 2 ∫x dx - 3 ∫ cos x dx + ∫ ex dx
= 2. - 3 sin x + ex + C
= x2 - 3 sin x + ex + C
Question 17.
∫ (2x2 - 3 sin x + 5√x) dx
Answer:
∫ (2x2 - 3 sin x + 5√x) dx
= 2 ∫x2 dx - 3 ∫ sin x dx + 5 ∫x1/2 dx
Question 18.
∫ sec x (sec x + tan x) dx
Answer:
∫ sec x (sec x + tan x) dx
= ∫ sec2x dx + ∫sec x tan x dx
= tan x + sec x + C
Question 19.
∫
Answer:
Let I = ∫ dx = ∫ dx
= ∫tan2 dx
= ∫ (sec2 x - 1) dx
= ∫ sec2 x dx - ∫1. dx
= tan x - x + C
Question 20.
∫ dx
Answer:
Let I = ∫ dx
= ∫ dx
= 2 ∫ sec2 x dx - 3 ∫ sec x tan x dx
= 2 tan x - 3 sec x + C
Question 21.
The antiderivative of (√x + ) equals:
(A) x1/3 + 2x1/2 + C
(B) x2/3 + x2 + C
(C) x3/2 + 2x1/2 + C
(D) x3/2 + x1/2 + C
Answer:
Hence, (C) is the correct answer.
Question 22.
If f(x) = 4x3 - such that f(2) = 0. Then f(x) is:
(A)
(B)
(C)
(D)
Answer:
Either way the teacher or student will get the solution to the problem within 24 hours.