RBSE Class 12 Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.3
Find
in the following:
Question 1.
2x + 3y = sin x
Answer:
Given, 2x + 3y = sin x
Differentiating both sides w.r.t. x, we get
2.1 + 3 = cos x ⇒ 3 = cos x - 2
Thus, =
Question 2.
2x + 3y = sin y
Answer:
Given, 2x + 3y = sin y
Differentiating both sides w.r.t. x, we get
2.1 + 3 = cos y
⇒ 2 = cos y - 3 ⇒ 2 = (cos y - 3)
Thus, =
Question 3.
ax + by2 = cos y
Answer:
Given, ax + by2 = cos y
Differentiating both sides w.r.t. x, we get
a.1 = 2by = - sin y
⇒ (sin y + 2by) = - a
Thus, =
Question 4.
xy + y2 = tan x + y
Answer:
Given xy + y2 = tan x + y
Differentiating both sides w.r.t. x, we get
x. + 1.y + 2y = sec2 x +
Question 5.
x2 + xy + y2 = 100
Answer:
Given, x2 + xy + y2 = 100
Differentiating both sides w.r.t. x, we get
2x + x. + 1.y + 2y = 0
⇒ (x + 2y) = - y - 2x = - (y + 2x)
Thus, = -
Question 6.
x3 + x2y + xy2 + y3 = 81
Answer:
Given x3 + x2y + xy2 + y3 = 81
Differentiating both sides w.r.t. x, we get
3x2 + 2xy + x2 + 1.y2 + x.2y + 3y2 = 0
⇒ 3x2 + 2xy + y2 + (x2 + 2xy + 3y2) = 0
⇒ (x2 + 2xy + 3y2) = - (3x2 + 2xy + y2)
Thus, = -
Question 7.
sin2 y + cos xy = k
Answer:
Given, sin2 y + cos xy = k
Differentiating both sides w.r.t. x, we get
2 sin y cos y + (- sin xy) (x + 1.y) = 0
⇒ sin 2y - x sin xy - y sin xy = 0
[∵ 2 sin y cos y = sin2y]
⇒ (sin 2y - x sin xy) = y sin xy
Thus, =
Question 8.
sin2 x + cos2 y = 1
Answer:
Given sin2 x + cos2 y = 1
Differentiating both sides w.r.t. x, we get
2 sin x cos x - 2 cos y sin y = 0
⇒ sin 2x - sin 2y = 0
⇒ - sin 2y = - sin 2x
⇒ =
Thus, =
Question 9.
y = sin-1
Answer:
Given y = sin-1
Differentiating both sides w.r.t. x, we get
Alternatively:
y = sin-1
let x = tan θ,
Then θ = tan-1 x
∴ y = sin-1
⇒ y = sin-1 (sin 2θ)
⇒ y = 2θ (∵ sin 2θ = )
⇒ y = 2 tan-1 x
Differentiating both sides w.r.t. x, we get
=
Question 10.
y = tan-1, -
Answer:
Given y = tan-1
Let x = tan θ then θ = tan-1 x
and y = tan-1
⇒ y = tan-1 (tan 3θ) = 3θ
⇒ y = 3 tan-1 x
Differentiating both sides w.r.t x, we get
=
Question 11.
y = cos-1 , 0 < x < 1
Answer:
Given, y = cos-1, 0 < x < 1
Let x = tan θ then θ = tan-1x
and y = cos-1
⇒ y = cos-1 (cos 2θ) = 2θ = 2 tan-1x
Differentiating both sides w.r.t x, we get
=
Question 12.
y = sin-1, 0 < x < 1
Answer:
Given y = sin-1
Let x = tan θ, then θ = tan-1 x
Question 13.
Question 14.
y = sin-1 (2x), - < x <
Answer:
Given y = sin-1 (2x)
Let x = sin θ, then θ = sin-1 x
and y = sin-1 (2 sin θ )
⇒ y = sin-1 (2 sin θ cos θ)
⇒ y = sin-1 (sin 2θ) = 2θ = 2 sin-1 x
Differentiating both sides w.r.t x, we get
= 2 (sin-1 x)
Thus, =
Question 15.
Either way the teacher or student will get the solution to the problem within 24 hours.