RBSE Class 12 Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.3

Topprs
0

RBSE Class 12 Maths Solutions Chapter 5 Continuity and Differentiability Ex 5.3

Find 

dydx in the following:

Question 1.
2x + 3y = sin x
Answer:
Given, 2x + 3y = sin x
Differentiating both sides w.r.t. x, we get
2.1 + 3dydx = cos x ⇒ 3dydx = cos x - 2
Thus, dydx = cosx23

Question 2.

2x + 3y = sin y
Answer:
Given, 2x + 3y = sin y
Differentiating both sides w.r.t. x, we get
2.1 + 3dydx = cos y dydx
⇒ 2 = cos y dydx - 3dydx ⇒ 2 = (cos y - 3) dydx
Thus, dydx = 2cosy3

Question 3.
ax + by2 = cos y
Answer:
Given, ax + by2 = cos y
Differentiating both sides w.r.t. x, we get
a.1 = 2bydydx = - sin y dydx
⇒ (sin y + 2by) dydx = - a
Thus, dydx = asiny+2by

Question 4.

xy + y2 = tan x + y
Answer:
Given xy + y2 = tan x + y
Differentiating both sides w.r.t. x, we get
x. dydx + 1.y + 2y dydx = sec2 x + dydx

Question 5.
x2 + xy + y2 = 100
Answer:
Given, x2 + xy + y2 = 100
Differentiating both sides w.r.t. x, we get
2x + x. dydx + 1.y + 2y dydx = 0
⇒ (x + 2y) dydx = - y - 2x = - (y + 2x)
Thus, dydx = -(y+2x)(x+2y)

Question 6.
x3 + x2y + xy2 + y3 = 81
Answer:
Given x3 + x2y + xy2 + y3 = 81
Differentiating both sides w.r.t. x, we get
3x2 + 2xy + x2dydx + 1.y2 + x.2ydydx + 3y2dydx = 0
⇒ 3x2 + 2xy + y2 + (x2 + 2xy + 3y2dydx = 0
⇒ (x2 + 2xy + 3y2)dydx = - (3x2 + 2xy + y2)
Thus, dydx = - (3x2+2xy+y2)(x2+2xy+3y2)

Question 7.

sin2 y + cos xy = k
Answer:
Given, sin2 y + cos xy = k
Differentiating both sides w.r.t. x, we get
2 sin y cos y dydx + (- sin xy) (x dydx + 1.y) = 0
⇒ sin 2y dydx - x sin xy dydx - y sin xy = 0
[∵ 2 sin y cos y = sin2y]
⇒ (sin 2y - x sin xy)dydx = y sin xy
Thus, dydx = ysinxy(sin2yxsinxy)

Question 8.
sin2 x + cos2 y = 1
Answer:
Given sin2 x + cos2 y = 1
Differentiating both sides w.r.t. x, we get
2 sin x cos x - 2 cos y sin y dydx = 0
⇒ sin 2x - sin 2y dydx = 0
⇒ - sin 2y dydx= - sin 2x
⇒ dydx = sin2xsin2y=sin2xsin2y
Thus, dydx = sin2xsin2y=sin2xsin2y

Question 9.
y = sin-1(2x1+x2)
Answer:
Given y = sin-1(2x1+x2)
Differentiating both sides w.r.t. x, we get



Alternatively:
y = sin-1 (2x1+x2)

let x = tan θ,
Then θ = tan-1 x
∴ y = sin-1 (2tanθ1+tan2θ)
⇒ y = sin-1 (sin 2θ)
⇒ y = 2θ (∵ sin 2θ = 2tanθ1+tan2θ)
⇒ y = 2 tan-1 x
Differentiating both sides w.r.t. x, we get
dydx = 21+x2

Question 10.

y = tan-1(3xx313x2), - 13<x<13
Answer:
Given y = tan-1(3xx313x2)
Let x = tan θ then θ = tan-1 x
and y = tan-1(3tanθtan3θ13tan2θ)
⇒ y = tan-1 (tan 3θ) = 3θ
⇒ y = 3 tan-1 x
Differentiating both sides w.r.t x, we get
dydx31+x2

Question 11.
y = cos-1 (1x21+x2), 0 < x < 1
Answer:
Given, y = cos-1(1x21+x2), 0 < x < 1
Let x = tan θ then θ = tan-1x
and y = cos-1(1tan2θ1+tan2θ)
⇒ y = cos-1 (cos 2θ) = 2θ = 2 tan-1x
Differentiating both sides w.r.t x, we get
dydx = 21+x2

Question 12.
y = sin-1(1x21+x2), 0 < x < 1
Answer:
Given y = sin-1(1x21+x2)
Let x = tan θ, then θ = tan-1 x

Question 13.

y = cos-1(2x1+x2), - 1 < x < 1
Answer:

Question 14.
y = sin-1 (2x1x2), -12 < x < 12
Answer:
Given y = sin-1 (2x1x2)
Let x = sin θ, then θ = sin-1 x
and y = sin-1 (2 sin θ 1sin2θ)
⇒ y = sin-1 (2 sin θ cos θ)
⇒ y = sin-1 (sin 2θ) = 2θ = 2 sin-1 x
Differentiating both sides w.r.t x, we get
dydx = 2 ddx (sin-1 x)
Thus, ddx = 21x2

Question 15.

y = sec-1(12x21), 0 < x < 12
Answer:

सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close