RBSE Class 12 Maths Solutions Chapter 4 Determinants Miscellaneous Exercise
Question 1.
Prove that the determinant x is independent of θ.
Answer:
= x(- x2 - 1) - sin θ (- x sin θ - cos θ) + cos θ (- sin θ + x cos θ)
= x(- x2 - 1) + x sin2 θ + sin θ cos θ - cos θ sin θ + x cos2 θ
= - x3 - x + x(sin2 θ + cos2 θ)
= - x3 - x + x × 1 = - x3
Clearly, ∆ is independent of θ.
Hence Proved.
Question 2.
Without expanding the determinant, prove that
=
Answer:
Question 4.
If a, b and c are real numbers and
Δ = = 0
then show that either a + b + c = 0 and a = b = c.
Answer:
Given determinant is:
⇒ 2(a + b + c) {(b - c) × (c - b) - (c - a) (b - a)} = 0
⇒ 2(a + b + c) {- (b - c)2 - (cb - ca - ab + a2)} = 0
⇒ 2(a + b + c) {- b2 - c2 + 2bc - bc + ca + ab - a2} = 0
⇒ 2(a + b + c) × {- a2 - b2 - c2 + bc + ca + ab} = 0
⇒ - 2(a + b + c) × {a2 + b2 + c2 - ab - bc - ca] = 0
⇒ -(a + b + c) {2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca] = 0
⇒ - (a + b + c) {(a2 + b2 - 2ab + b2 + c2 - 2ab + c2 + a2 - 2ac} = 0
⇒ - (a + b + c) × {(a - b)2 + {b - c)2 + (c - a)2} = 0
⇒ a + b + c = 0
or (a - b)2 + (b - c)22 + (c - a)2 = 0
⇒ a - b = 0, b - c = 0, c - a = 0
⇒ a = b, b = c, c = a
⇒ a = b = c
Hence a + b + c = 0
or a = b = c
Hence Proved.
Question 5.
If a ≠ 0 then, solve
= 0
Answer:
Question 6.
Prove that
= 4a2b2c2
Answer:
= 2a2b2c {(a + c) (1 - 0) - 1(a + b -b - c)}
= 2a2b2c{a + c - a - b + b + c}
= 2a2b2c(2c)
= 4a2b2c2
Hence Proved.
Question 7.
If A-1 = and B = then find the value of (AB)-1.
Answer:
We have,
= 1(3 - 0) - 2(-1 - 0) - 2(2 - 0)
= 3 + 2 - 4 = 1
∴ |B| = 1 ≠ 0
Since, B is non-singular so B-1 exists.
If Bij is cofactor of bij in B, then
B11 = + [3 × 1 - (- 2) × 0] = 3
B12 = (- 1) (- 1) - 0 = 1
B13 = + [(- 1) × (- 2) - 0 × 3] = 2
B21 = (- 1) (2 - 4) = (- 1) (- 2) = 2
B22 = + [1 × 1 - 0 (- 2) = 1
B23 = (- 1) [1 × (- 2) - 0 × 2] = 2
B31 = + [2 × 0 - 3 × (- 2)] = 6
B32 = (- 1) [0 - (- 1) (- 2)] = 2
B33 = + [1 × 3 - (-1) × 2] = 3 + 2 = 5
Question 8.
Let A = , then verify that
(i) (adj A)-1 = (adj) A-1
Answer:
Given, A =
Determinant of matrix A,
|A| =
= (15 - 1) + 2(- 10 - 1) + (- 2 - 3)
= 14 + 2(- 11) + (- 5)
= 14 - 22 - 5 = - 13
∴ | A | = - 13 ≠ 0
Since, matrix A is non-singular so A-1 exists.
If Aij is cofactor of aij in A, then
A11 = + [3 × 5 - 1 × 1] = 15 - 1 = 14
A12 = (- 1) [- 10 - 1] = 11
A13 = + [- 2 × 1 - 1 × 3] = - 2 - 3 = - 5
A21 = (- 1) [- 10 - 1] = (- 1) × (- 11) = 11
A22 = + [1 × 5 - 1 × 1] = 5 - 1 = 4
A23 = (- 1) [1 + 2] = (- 1) × 3 = - 3
A31 = + [- 2 × 1 - 3 × 1] = - 2 - 3 = - 5
A32 = (- 1) [1 + 2] = (- 1) (3) = - 3
A33 = + [1 × 3 - (- 2) × (- 2)] = 3 - 4 = - 1
= 14(- 4 - 9) - 11(- 11 - 15) - 5(- 33 + 20)
= 14(- 13) - 11(- 26) - 5 (-13)
= - 182 + 286 + 65 = 169
∴ |B| = 169 ≠ 0
Since, matrix B is non-singular so B-1 exists.
If Bij is cofactor of bij in B, then
B11 = + [4 × (-1) - (- 3) × (- 3)] = - 4 - 9 = -13
B12 = (- 1) (- 11 - 15)] = (- 1) (- 26) = 26
B13 = + [11 × (- 3) - (- 5) × 4] = - 33 + 20 = - 13
B21 = (- 1) [- 11 - 15)] = (- 1) (- 26) = 26
B22 = + [14 × (- 1) - (- 5) × (- 5)] = -14 - 25 = - 39
B23 = (- 1) (- 42 + 55) = (- 1) (13) = - 13
B31 = + [11 × (- 3) - 4 × (- 5)] = - 33 + 20 = - 13
B32 = (- 1) [- 42 + 55] = (- 1) (13) = - 13
B33 = + [14 × 4 - 11 × 11] = 56 - 121 = - 65
(ii) (A-1)-1 = A
Question 9.
Evaluate:
Answer:
= 2(x + y) {x × (- x) - (x - y) × (- y)}
= 2(x + y) {- x2 + xy - y2}
= - 2(x + y) (x2 - xy + y2)
= - 2(x3 + y3)
Question 10.
Using properties of determinants in Question 11 to 15. Prove that
Question 11.
= (β - γ) (γ - α) (α - β) (α + β + γ)
Answer:
Applying R2 → R2 - R1 and R3 → R3 - R1
Taking common (β - α) and (γ - α) from R2 and R3 respectively
⇒ ∆ = (α + β + γ) (β - α) (γ - α) × {(β - α) (- 1) - (γ + α) (- 1)}
⇒ ∆ = (α + β + γ) (β - α) (γ - α) × (- β - α + γ + α)
⇒ ∆ = (α + β + γ) (β - α) (γ - α) (- β + γ)
⇒ ∆ = (α + β + γ) (α - β) (γ - α) (γ - β) [∵ (β - α) = - (α - β), (γ - β) = - (β - γ)]
⇒ ∆ = (α + β + γ) (α - β) (β - γ) (γ - α)
= R.H.S
Hence Proved.
Question 12.
= (1 + pxyz) (x - y) (y - z) (z - x), where p is any scalar.
Answer:
Now, in ∆1, applying R2 → R2 - R1 and R3 → R3 - R1
∆1 =
Taking factor (y - z) and (z - x) common from R2 and R3 respectively
⇒ ∆1 = (y - x) (z - x) {1(z + x) - 1 × (y + x)}
⇒ ∆1 = (y - x) (z - x) {z + x - y - x}
⇒ ∆1 = (y - x) (z - x) (z - y)
⇒ ∆1 = (x - y) (y - z) (z - x)
[∵ (y - x) = - (x - y) and (z - y) = - (y - z)]
∴ ∆1 = (x - y) (y - z) (z - x) ...... (2)
Now ∆2 =
Taking x, y, z common from R1, R2 and R3 respectively and p from C3
Again, taking common (y - x) and (z - x) from R2 and R3 respectively,
∆2 = pxyz(y - x) (z - x)
Now, expanding ∆2 along C1
⇒ ∆2 = pxyz(y - x) (z - x) ×
⇒ ∆2 = pxyz(y - x) (z - x) × {1 × (z + x) - 1 × (y + x)}
⇒ ∆2 = pxyz{y - x) (z - x) (z + x - y - x)
⇒ ∆2 = pxyz(y - x) (z - x) (z - y)
⇒ ∆2 = pxyz(x - y) (y - z) (z - x)
[∵ (y - x) = -(x - y) and (z - y) = - (y - z)]
∴ ∆2 = pxyz(x - y) (y - z) (z - x) ....... (3)
Now, substituting the values of ∆1 and ∆2 in equation (1), we get
∆ = (x - y) (y - z) (z - x) + pxyz(x - y) (y - z) (z - x)
⇒ ∆ = (x - y) (y - z) (z - x) (1 + pxyz)
∴ ∆ = (1 + pxyz) (x - y) (y - z) (z - x)
= R.H.S.
Hence Proved.
Question 13.
= 3(a + b + c) (ab + bc + ca)
Answer:
⇒ ∆ = (a + b + c) {(a + 2b) (2c + a) - (- c + a) (- b + a)}
⇒ ∆ = (a + b + c) {2ca + a2 + 4bc + 2ba - (bc - ac- ab + a2)}
⇒ ∆ = (a + b + c) {(2ca + a2 + 4bc - bc + ac + ab - a2 + 2ab}
⇒ ∆ = (a + b + c) {3ab + 3bc + 3ca}
⇒ ∆ = (a + b + c) × 3 (ab + bc + ca)
⇒ ∆ = 3 (a + b + c) (ab + bc + ca)
∴ ∆ = 3 (a + b + c) (ab + bc + a)
Question 14.
Question 15.
= 0
Answer:
Thus, ∆ = 0 (all elements of C3 are zero)
Hence Proved.
Question 16.
Solve the following equations :
= 4
= 1
= 2
Answer:
Given system of equation is
= 4
= 1
= 2
Let u = , v = and w = then
2u + 3v + 10 w = 4
4u - 6v + 5w = 1
6u + 9v - 20w = 2
Writing in matrix form
AX = B ....... (1)
⇒ |A| = 2 × 75 - 3 × (- 110) + 10 x× 72
⇒ |A| = 150 + 330 + 720 = 1200
∴ |A| = 1200 ≠ 0
Since, matrix A is non-singular so A-1 exists.
If Aij is cofactor of aij in A, then
A11 = + [- 6 × (- 20) - 9 × 5] = 120 - 45 = 75
A12 = (- 1) [- 80 - 30] = (- 1) (- 110) = 110
A13 = + [4 × 9 - 6 × (- 6)] = 36 + 36 = 72
A21 = (- 1) (- 60 - 90) = (- 1) (- 150) = 150
A22 = + [- 40 - 60] = - 100
A23 = (- 1) [18 - 18] = 0
A31 = + [3 × 5 - (- 6) × 10] = 15 + 60 = 75
A32 = (- 1) (10 - 40) = (-1) (- 30) = 30
A33 = + [2 × (- 6) - 4 × 3] = - 12 - 12 = - 24
Question 17.
If a,b,c are in A.P., then the determinant is:
(A) 0
(B) 1
(C) x
(D) 2x
Answer:
All element of R2 are zero.
Thus, option (A) is correct.
Question 18.
If x, y, z are non-zero real numbers, then the inverse of matrix A = is:
Answer:
Let A =
∴ Determinant of matrix A is
|A| = x - 0 + 0
= x(yz - 0) = xyz
∴ |A| = xyz ≠ 0
If Aij is cofactor of aij in A, then
A11 = + [yz - 0] = yz
A12 = (- 1) (0 × z - 0 × 0) = 0
A13 = + [0 × 0 - 0 × y = 0]
A21 = (- 1) (0 × z - 0 × 0) = 0
A22 = + [xz - 0 × 0] = xz
A23 = (- 1) (x × 0 - 0 × 0) = 0
A31 = + [0 × 0 - 0 × y] = 0
A32 = (- 1) [x × 0 - 0 × 0] = 0
A33 = + [x × y - 0 × 0] = xy
Thus, option (A) is correct.
Question 19.
If A = , where 0 ≤ θ ≤ 2π, then
(A) Det (A) = 0
(B) Det (A) ∈ (2, ∞)
(C) Det (A) ∈ (2, 4)
(D) Det (A) ∈ [2, 4]
Answer:
⇒ (1 + sin2θ) + (sin2θ - sin2θ) + (sin2θ + 1)
⇒ |A| = 1 + sin2θ + sin2θ + 1
⇒ |A| = 2(1 + sin2θ)
Now θ = 0, |A| = 2
θ = ,
|A| = 2(1 + 1) = 4
∴ det (A) ∈ [2, 4]
Thus, option (D) is correct.
Either way the teacher or student will get the solution to the problem within 24 hours.