RBSE Class 12 Maths Solutions Chapter 4 Determinants Ex 4.2

Topprs
0

RBSE Class 12 Maths Solutions Chapter 4 Determinants Ex 4.2

Question 1.

|xax+ayby+bzcz+c| = 0
Answer:


Question 2.

|abbccabccaabcaabbc| = 0
Answer:


Question 3.
|276538755986| = 0
Answer:


Question 4.
|1bca(b+c)1cab(c+a)1abc(a+b)| = 0
Answer:


Question 5.

|b+cq+ry+zc+ar+pz+xa+bp+qx+y|=2|apxbqycrz|
Answer:


Question 6.
|0aba0cbc0| = 0
Answer:

= - Δ
⇒ Δ + Δ = 0 ⇒ 2Δ = 0
⇒ Δ = 0
Hence proved.

Question 7.

|a2abacbab2bccacbc2| = 4a2b2c2
Answer:


Question 8.
(i) |1aa21bb21cc2| = (a - b) (b - c) (c - a)
Answer:

Taking (b - a) and (c - a) common from R2 and R3 respectively
Δ = (b - a) (c - a) |1aa201b+a01c+a|
Expanding along C1
Δ = (b - a) (c - a) {1|1b+a1c+a|}
= (b - a) (c - a) {c + a - b - a}
= (b - a) (c - a) (c - b)
= (a - b) (b - c) (c - a)
Hence proved

(ii) |111abca3b3c3| = (a - b) (b - c) (c - a) (a + b + c)
Answer:

= (a - b) (b - c) × {b2 + bc + c2 - a2 - ab - b2}
= (a - b) (b - c) {c2 - a2 + bc - ab}
= (a - b) (b - c) × {(c - a) (c + a) + b(c - a)}
= (a - b) (b - c) (c - a) (a + b + c)
Hence Proved.

Question 9.

|xx2yzyy2zxzz2xy| = (x - y) (y - z) (z - x) (xy + yz + zx)
Answer:

Taking (x - y) and (y - z) common from R1 and R2 respectively

= (x - y) (y - z) (z - x) × {xy - z2 + z(x + y + z)}
= (x - y) (y - z) (z - x) × (xy - z2 + xz + yz + z2)
= (x - y) (y - z) (z - x) (xy + yz + zx)
Hence Proved.

Question 10.
(i) |x+42x2x2xx+42x2x2xx+4| = (5x + 4) (4 - x)2
Answer:

= (5x - 4) {(x - 4) (x - 4) - 0 × (4 - x)}
= (5x + 4) (x - 4)2
= (5x + 4) (4 - x)2
Hence Proved.

(ii) |y+kyyyy+kyyyy+k| = k2(3y + k)
Answer:


Question 11.

(i) |abc2a2a2bbca2b2c2ccab| = (a + b + c)3
Answer:


(ii) |x+y+2zxyzy+z+2xyzxz+x+2y| = 2(x + y + z)3
Answer:


Question 12.

|1xx2x21xxx21| = (1 - x3)2
Answer:

= (1 + x + x2) (1 - x2) (1 + x + x2)
= (1 + x + x2)2 (1 - x)2 = {(1 + x + x2) (1 - x)}2
= (1 - x3)2
Hence proved.

Question 13.
|1+a2b22ab2b2ab1a2+b22a2b2a1a2b2| = (1 + a2 + b2)3
Answer:
RBSE Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.2 17
= (1 + a2 + b2)2 {1 - a2 - b2 + 2a2 + 2b2}
= (1 + a2 + b2)2 {1 + a2 + b2}
= (1 + a2 + b2)3
Hence Proved.

Question 14.

|a2+1abacabb2+1bccacbc2+1| = 1 + a2 + b2 + c2
Answer:

= (1 + a2 + b2 + c2) {1 (1 × 1 - 0)}
= (1 + a2 + b2 + c2).1
= 1 + a2 + b2 + c2
Hence Proved.

Question 15.
Let A be a square matrix of order 3 × 3,then | kA | is equal to:
(A) k|A|
(B) k2|A|
(C) k3|A|
(D) 3k |A|
Answer:

Thus, option (C) is correct.

Question 16.
Which of the following is correct:
(A) Determinant is a square matrix.
(B) Determinant is a number associated to a matrix.
(C) Determinant is a number associated to a square matrix.
(D) None of these
Answer:
Option (C) is correct.

सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close