RBSE Class 12 Maths Solutions Chapter 4 Determinants Ex 4.1
Question 1.
Answer:
= 2 × (- 1) - (- 5) × 4
= - 2 + 20 = 18
Question 2.
(i)
Answer:
= cos2θ - (- sin θ) sin θ
= cos2θ + sin2θ = 1
(ii)
Answer:
= (x2 - x + 1) (x + 1) - (x + 1) (x - 1)
= x3 + 1 - x2 + 1 = x3 - x2 + 2
Question 3.
If A = , then show that: |2A| = 4 |A|
Answer:
= 4(2 - 8) = 4 × (- 6) = - 24 ....... (2)
Form (1) and (2), we get
|2A| = 4|A|
Question 4.
If A = , then show that: |3A| = 27|A|
Answer:
Expanding along R3, we get
|3A| = 0 - 0 + 12(3 × 3 - 0 × 0) = 108
∴ |3A| = 108
∴ |3A| = 27 × 4 = 27 |A|
Thus, |3A| = 27 |A|
Hence Proved.
Question 5.
Evaluate the determinants:
(i)
Answer:
Let |A| =
Expanding along R2, we get
⇒ |A| = 0 + 0 + 1{3 × (- 5) - (- 1) × 3}
Thus, |A| = 1(- 15 + 3) = - 12
(ii)
Answer:
Expanding along R1, we get
|A| = 3(1 × 1 - (3) × (- 2)) + 4(1 × 1 - 2 × (- 2)) + 5(1 × 3 - 2 × 1)
= 3(1 + 6) + 4(1 + 4) + 5(3 - 2)
= (3 × 7) + (4 × 5) + (5 × 1) = 46
(iii)
Answer:
Let |A| =
Expanding along R1, we get
A = 0 - 1(- 1 × 0 - (- 2) × (- 3)) + 2(- 1 × 3 - (- 2) × 0)
= - 1(0 - 6) + 2(- 3 - 0) = 6 - 6 = 0
(iv)
Answer:
Expanding along R1, we get
|A| = 0 + 2(2 × 0 - 3 × (- 2)) + 1(2 × (- 5)- 3 × (- 1))
= 2(0 + 6) + 1(- 10 + 3)
= 2 × 6 + 1 × (- 7)
= 12 - 7 = 5
Question 6.
If A = , then find |A|.
Answer:
Let |A| =
Expanding along R1, we get
|A| = 1(1 × (- 9) - 4 × (- 3)) - 1(2 × (- 9) - 5 × (- 3)) - 2(2 × 4 - 5 × 1)
= |A| = 1( - 9 + 12) - 1(- 18 + 15) - 2(8 - 5)
= (1 × 3) - (1 × (- 3) - (2 × 3)
= 3 + 3 - 6 = 6 - 6 = 0
Thus, |A| = 0
Question 7.
Find the value of x, if
(i)
Answer:
Given,
⇒ (2 × 1) - (5 × 4) = (2x × x) - (6 × 4)
⇒ 2 - 20 = 2x2 - 24 ⇒ - 18 = 2x2 - 24
⇒ 2x2 = 24 - 18
⇒ 2x2 = 6
⇒ x2 = 3
∴ x = ± √3
(ii)
Answer:
⇒ (2 × 5) - (4 × 3) = (x × 5) - (2x × 3)
⇒ 10 - 12 = 5x - 6x
⇒ - 2 = - x ⇒ x = 2
Question 8.
If , then x is equal to:
(A) 6
(B) ± 6
(C) - 6
(D) 0
Answer:
Given,
⇒ (x × x) - (18 × 2) = (6 × 6) - (18 × 2)
⇒ x2 - 36 = 36 - 36 ⇒ x2 - 36 = 0
⇒ x2 = 36 ⇒ x = √36 ⇒ x = ±6
Thus, option (B) is correct.
Either way the teacher or student will get the solution to the problem within 24 hours.