RBSE Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Topprs
0

RBSE Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise

Question 1.

Find the value of cos-1(cos13π6).
Answer:
Principal value branch of cos-1 is (0, π).


Question 2.
Find the value of tan-1(tan7π6).
Answer:


Prove that:

Question 3.
sin-1(35) = tan-1(247)
Answer:


Question 4.
Prove that:
sin-1(817) + sin-1(35) = tan-1(7736)
Answer:


Question 5.
Prove that:
cos-145 + cos-11213 = cos-13365
Answer:


Question 6.
cos-11213 + sin-135 = sin-15665
Answer:


Question 7.
Prove that
tan-16316 = sin-1513 + cos-135
Answer:





Question 8.
Prove that:
tan-1 15 + tan-1 17 + tan-1 13 + tan-1 18 = π4
Answer:


Question 9.
Prove that:
tan-1√x = 12 cos-1(1x1+x), x ∈ [0, 1]
Answer:


Question 10.
Prove that
cot-1[1+sinx+1sinx1+sinx1sinx] = x2, x ∈ (0,π4)
Answer:


Question 11.
Prove that:
tan-1 [1+x1x1+x+1x] = π412 cos-1x, - 12 ≤ x ≤ 1
Answer:
Let x = cos 2θ

Thus, L.H.S. = R.H.S.
Hence Proved


Question 12.
Prove that:
9π894 sin-1 (13) = 94 sin-1(223)
Answer:


Solve the following equations:

Question 13.
tan-1 (cos x) = tan-1 (2 cosec x)
Answer:

⇒ cos x = sin2x × cosec x
⇒ cos x = sin x
⇒ tan x = 1 ⇒ tan x = tan π4
Thus, x = π4


Question 14.
tan-1 1x1+x = 12 tan-1x, (x > 0)
Answer:


Question 15.
sin (tan-1 x), |x| < 1 is equal to:
(A) x1x2
(B) 11x2
(C) 11+x2
(D) x1+x2
Answer:
Let tan-1 x = θ ⇒ tan θ = x
∴ sin θ = tan θ = x1

From ∆ABC, sin θ = x1+x2
⇒ sin (tan-1 x) = x1+x2
Thus, option (D) is correct.


Question 16.
If sin-1 (1 - x) - 2 sin-1x = π2, then x is equal to:
(A) 0, 12
(B) 1, 12
(C) 0
(D) 12
Answer:
sin-1 (1 - x) - 2 sin-1 x = π2
⇒ sin-1 (1 - x) - 2 sin-1 x = sin-1 (1 - x) + cos-1 (1 - x)
⇒ - 2 sin-1 x = cos-1 (1 - x)
[∵ sin-1 (1 - x) + cos-1 (1 - x) = π2]
Let sin-1 x = θ
then sin θ = x
Let sin-1 x = θ
⇒ sin θ = x
∴ - 2θ = cos-1 (1 - x)
⇒ cos (- 2 θ) = 1 - x
⇒ cos 2θ = 1 - x [∵ cos (- θ) = cos θ] ...(i)
Since, we know that
cos 2 θ = 1 - 2 sin2 θ
⇒ cos 2θ = 1 - 2x2 ..... (ii)
From equations (i) and (ii), we have
1 - x = 1 - 2x2
⇒ 2x2 - 2 = 0
⇒ x (2x - 1) = 0
⇒ x = 0, x = 12
But x = 12 does not satisfies given equation.
∴ x = 0
Thus, option (C) is correct.

Question 17.
tan-1(xy) - tan-1(xyx+y) is equal to:
(A) π2
(B) π3
(C) π4
(D) 3π4
Answer:

Thus, option (C) is correct.

सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close