RBSE Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions Ex 2.2

Topprs
0

RBSE Class 12 Maths Solutions Chapter 2 Inverse Trigonometric Functions Ex 2.2

Question 1.

3 sin-1 x = sin-1 (3x - 4x3), x ∈ [12,12]
Answer:
Let sin-1 x = θ ⇒ sin θ = x
∵ sin 3θ = 3 sin θ - 4 sin3θ
⇒ sin 3θ = 3x - 4x3
⇒ 3θ = sin-1(3x - 4x3)
Thus, 3 sin-1 x = sin-1 (3x - 4x3)
Hence Proved.

Question 2.
3 cos-1x = cos-1 (4x3 - 3x), x ∈ [12,1]
Answer:
Let cos-1 x = θ ⇒ cos θ = x
⇒ cos 3θ = 4 cos 3θ - 3 cos θ
⇒ cos 3θ = 4x3 - 3x
⇒ 3θ = cos-1 (4x3 - 3x)
Thus, 3 cos-1 x = cos-1 (4x3 - 3x)
Hence Proved.

Question 3.
tan-1211 + tan-1724 = tan-112
Answer:


Question 4.
2 tan-112 + tan-117 = tan-13117
Answer:


write the following functions in the simplest form:

Question 5.
tan-11+x21x, x ≠ 0
Answer:


Question 6.
tan-11x21, |x| > 1
Answer:


Question 7.
tan-1(1cosx1+cosx), 0 < x < π
Answer:


Question 8.
tan-1(cosxsinxcosx+sinx),π4 < x < 3π4
Answer:


Question 9.
tan-1 xa2x2, |x| < a
Answer:


Question 10.
tan-1{3a2xx3a33ax2}, a > 0, - a3 < x < a3
Answer:


Find the values of each of the following:

Question 11.
tan-1[2cos(2sin112)].
Answer:


Question 12.
cot (tan-1 a + cot-1 a)
Answer:
We have, cot (tan-1 a + cot-1 a)
= cot π2 = 0 (∵ tan-1 a + cot-1 a = π2)
Hence, cot(tan-1 a + cot-1 a) = 0

Question 13.
tan12[sin12x1+x2+cos11y21+y2], |x| < 1, y > 0 and xy > 1
Answer:


Question 14.
If sin(sin-1 (15) + cos-1 x) = 1, then find the value of x.
Answer:


Question 15.
If tan-1(x1x2)+ tan-1(x+1x+2) = π4, then find value of x.
Answer:


Find the values of each of the expression in questions 16 to 18:

Question 16.
sin-1 (sin2π3).
Answer:


Question 17.
tan-1 (tan3π4)
Answer:

Question 18.
tan (sin135+cot132)
Answer:


Question 19.
cos-1 (cos7π6) is equal to:
(A) 7π6
(B) 5π6
(C) π3
(D) π6
Answer:
The principal value branch of cos-1 is [0, π].
RBSE Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions Ex 2.2 16
Thus, option (B) is correct.

Question 20.
sin [π3-sin-1 (12)] is equal to:
(A) 12
(B) 13
(C) 14
(D) 1
Answer:

Thus, option(D) is correct.


Question 21.
tan-1 √3 - cot-1 (- √3) is equal to:
(A) π
(B) - π2
(C) 0
(D) 2√3
Answer:


सभी प्रकार के नोट्स TOPPRS.IN पर FREE उपलब्ध है !

Post a Comment

0Comments

Either way the teacher or student will get the solution to the problem within 24 hours.

Post a Comment (0)
close